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NOTES

Spurious Modes in Spectral Collocation Methods with
Two Non-periodic Directions

1. INTRODUCTION

Most existing numerical solutions of incompressible
Navier-Stokes equations in three dimensions employ the
primitive-variable formulation. Here, the velocity field and
pressure cannot be approximated independently and must
satisfy a compatibility condition. Approximating both
velocity and pressure by polynomials of the same degree will
result in some spurious modes for the pressure [17]. In a
spectral collocation implementation, these spurious modes
can be characterized as the spurious components of the
pressure field whose discrete gradient at the interior colloca-
tion points, where discretized momentum equations are
satisfied, is zero. Such pressure components are lelt uncon-
trolled by the discretized governing equations, whereas,
these spurious pressure modes do not affect the velocity
field, since pressure enters the momentum equation
only through the pressure gradient term. Yet, this error
committed in the pressure field can significantly affect
quantities of interest, such as pressure fluctuation statistics,
pressure-strain correlation, €, distribution, and net
pressure forces.

In coupled spectral implementations where the continuity
equation is discretized directly, theoretical analysis of the
spurious modes is on a firm footing [1-6]. Earlier
investigators have pointed out the advantages of a staggered
mesh in eliminating the spurious modes [4-67. On the other
hand, the analysis of spurious modes in uncoupled spectral
implementations, where a pressure Poisson equation is
solved is not complete. Spurious modes in a one-dimen-
sional implementation of the Kleiser—Schumann’s influence
matrix method has been discussed in [7]. Here we identify
the spurious modes in the three-dimensional collocation
implementation of the Kleiser-Schumann method [8-10]
with two non-periodic directions. A simple correction pro-
cedure which will antomatically filter these spurious modes
is discussed. This correction procedure is applied in the
simulation of a turbulent square duct flow [10] and is
found to be very effective in eliminating all the spurious
modes.

2. SPURIOUS MODES FOR KLEISER-SCHUMANN’S
METHOD

The full implementation of the Kleiser-Schumann’s
method with collocation correction can be given by the
cquations and boundary conditions,

Vip=-V.(NL)+V.B in§2 {1a)

av 1, .
—ét_+NL=_VP+EV V+B inQ, 0 (1b)
V=V, on J€2 (1c)
V.v=90 on Q2 (1d)
B=0 in Q, (1e)

where NL is the nonlinear term in the Navier-Stokes equa-
tion and V, is the velocity boundary condition. The above
equations and boundary conditions are in their discretized
form, therefore the symbols V, V -, and V* represent discrete
gradient, divergence, and Laplacian operators, and € and
6 represent interior and boundary collocation points.
Since the momentum equation is satisfied only in the inte-
rior, B represents the boundary momentum residual and is
nonzero only on the boundary. The above formulation
identically satisfies all the velocity boundary conditions and
also results in a divergence-free velocity field both in the
interior and on the boundary.

By definition, each spurious mode is a valid solution
to the discretized governing equations and appropriate
boundary conditions. The spurious modes have a non-zero
contribution to pressure but have no effect on velocity,
therefore V=0, where subscript “sp” stands for the
spurious mode. The spurious pressure components there-
fore satisfy

Vip,=V-B,, in Q (2a)
0=—Vp,+B,, inQ Q (2b)
B,,=0 in €, (2c)
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where B, is the corresponding spurious boundary momen-
tum residual. Any non-trivial solution to the above linear
equations represents a spurious mode, which when added
to the true solution will still satisfy the discretized
Navier-Stokes equations and boundary conditions.

Eight solutions to the above equations can be identified.
First of which is the non-spurious selution, p,, = constant
and B, =0, which indicates that pressure is evaluated only
up to an arbitrary additive constant in incompressible flows.
The first two spurious modes are the /ine and column modes,

Psp = TN.\‘(x)e
(+ 1) (Nx)? at x=+1
B =
e {0 S otherwise } (%2)
BZsp = B35p =0’
and P, =Try),
_ (0™ vy at y==1
Bowp = {0 otherwise } (35)

Blsp = B3sp = 0'

Here (Nx+ 1) and (Ny + 1) are the number of points alohg
the non-periodic Chebyshev directions and the third direc-
tion is at most periodic. B,, B,, and B, are the three com-
ponents of the boundary momentum residual and only the
normal component is nonzero. T, and Ty, are Chebyshev
polynomiais of the highest degree along x and y. The third
spurious mode is the checkerboard mode, with

PSI—“ =Ty () Trl 3),
{(i DM (Nx) Tad v); at x=+ 1}
Blsp= i

0 otherwise @
o _JEDY NP Tl at =1
e 00 otherwise

B, =0.

These three spurious modes have no variation in the
periodic z direction and therefore contaminate only the
zeroth mode along the z direction. The other four spurious
.modes are the corner modes and each of them can have
arbitrary variation along the z direction. For example, let
f1.(z) be the arbitrary variation along the x=1, y=1
corner. Then the corner mode corresponding to this corner
can now be written as

Psp={f1,1(z)a at x=y=1},

0, otherwise

{fl,l(Z}DN\'(x): at y= +1}

0, otherwise

stp:{fl'l(z) DN,v(y), at x= +1}

0, otherwise
d
—fi, at x=y=1,
B3Sp = dZ ( 5)
0, otherwise,

where Dy (x) is the discrete derivative of the polynomial
which collocates to zero at all points except at x=1. The
corner modes for the other three corners can be written
similarly. The corster spurious modes simply reflect the fact
that in a collocation implementation the pressure along the
four cornerlines never enter into the computation and there-
fore their values remain unspecified,

3. FILTERING PROCEDURE

Implementation of the Kleiser-Schumann method
involves the construction of an influence matrix. The solu-
tion of the pressure Poisson equation (Eq. (12)) requires the
knowledge of pressure boundary conditions (p,) and
boundary momentum residuals (By) at the (2N, + 2N, —4)
points, excluding the corner points. These unknowns are
evaluated by requiring that continuity and normai momen-
tum equation (with the residual) are satisfied at the
boundary points, excluding the corner points. This provides
the necessary (4N,+4N,—8) linear equations for the
unknown quantities. These equations are cast into the
following matrix form, Ax =R, where A is the influence
matrix, X is the unknown vector of boundary pressure and
normal momentum residual, and R is the right-hand side. In
a three-dimensional problem, a Fourier transform along the
periodic z direction will result in one influence matrix for
each Fourier wavenumber k_. Invertibility of the influence
matrix is closely related to the presence of spurious modes.
In particular, the influence matrix corresponding to k=0
suffers from the constant, line, column, and checkerboard
modes and therefore has four zero eigenvalues. The
cigenvectors corresponding to these eigenvalues are the
corresponding spurious boundary pressure and normal
component of the momentum residual.

As suggested by Tuckerman [97, the non-invertibility of
the influence matrix can be easily overcome by constructing

. a related matrix A’= MAM ', where M and M ! are the

eigenvector matrix of the original influence matrix and its
inverse, respectively, and A’ is a diagonal matrix with the
eigenvalues along the diagonal and with the zero eigen-
values replaced by some non-zero constant. The influence
matrix now becomes invertible, i.e., A’ ~'=M(1/A )M ™,
and the resulting pressure and boundary momentum
residuals yield a divergence-free flow field independent of
the constant that replaces the zero cigenvalue. Let the pth
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eigenvalue of the original influence matrix be zero and be
replaced by a constant ¢,. Let the corresponding pth eigen-
vector be M, which is a vector of boundary pressures and
momentum residuals corresponding to a linear combination
of the spurious modes. Contribution of this pth mode to the
unknown vector x; is then M, b,/c,, where b, is the projec-
tion of the right-hand side along the eigenvectors, given by
M p}le. Once simple way to filter the four spurious modes
will then be to set the arbitrary constant ¢, to be infinity, In
other words, in the evaluation of A’ !, one over the zero
eigenvalue is simply replaced by zero.

This filtering procedure was implemented in the com-
putation of turbulent flow in a square duct [10]. The high
frequency oscillations present in the pressure field due to the
spurious modes were completely removed by this implicit
filtering procedure. A posteriori filtering of the spurious
pressure modes also produces the same result but at the
expense of the added cost of the explicit filtering procedure.
The buit-in filtering also has the added advantage of
automatically setting the mean pressure to be zero.

4. SPURIOUS MODES IN PARTIAL AND
TIME-SPLIT METHODS

Spurious modes for the partial implementation of the
Kleiser—-Schumann's method [11] without the coliocation
correction can be analyzed in similar fashion. It can be
easily seen that the only admissible solution for the above
set of equations is the non-spurious constant mode and there
are no spurious modes present. This is confirmed in the
numetical simulation by observing that the influence matrix
for the k,=0 mode has only one zero eigenvalue and the
corresponding constant mean pressure can be set to zero by
replacing the zero eigenvalue by infinity.

Spurious modes in the time split implementation will
depend on the exact boundary conditions employed for the
intermediate star-level velocities (V*) and the pressure
Poisson equation. Following Streett and Hussaini {123, if
we employ [(2Vpit) —Vp(t — t)) - 1] as the boundary con-
dition for the tangential components of the intermediate
star-level velocity, zero penetration for the normal velocity
component, and zero Neumann boundary condition for the
pressure, then we have the following equations satisfied by
the spurious modes:

VE=4tVp,, in &
vivs —2Rey, inQ
A T
6)
Vi -m=Vp,-n=0 in 0§}
Vi 1=(2Vp,, —Vp(t—dt)) 1 in 02,
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where n and t are direction normal and tangential to
the boundary. The analysis of the spurious modes is more
complicated and also depends on the initial tangential
pressure gradients on the boundary. With careful choice of
initial conditions, the no penetration and pure Neumann
boundary conditions will guarantee no spurious com-
ponents,

5. CONCLUSION

Collocation implementation of the Kleiser-Schumann
method in geometries with two non-periodic directions have
three spurious modes—/ine, colunm, and checkerboard—
contaminating the computed pressure field. The corner
spurious modes are also present but they do not affect
evaluation of the pressure-related quantities. The three
spurious modes can be easily filtered out by repiacing the
zero eigenvalues of the influence matrix with infinity
before solving for the unknown boundary pressure and
momentum  residuals, Partial implementation of the
Kleiser—Schumann method without coflocation correction
admits no spurious modes. Spurious modes can also be
avoided in time-split-implementations.
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